
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Georgilakis, Pavlos S.]
On: 24 July 2009
Access details: Access Details: [subscription number 913347427]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

GENETIC ALGORITHM MODEL FOR PROFIT MAXIMIZATION OF
GENERATING COMPANIES IN DEREGULATED ELECTRICITY MARKETS
Pavlos S. Georgilakis a

a Department of Production Engineering and Management, Technical University of Crete, Chania, Greece

Online Publication Date: 01 July 2009

To cite this Article Georgilakis, Pavlos S.(2009)'GENETIC ALGORITHM MODEL FOR PROFIT MAXIMIZATION OF GENERATING
COMPANIES IN DEREGULATED ELECTRICITY MARKETS',Applied Artificial Intelligence,23:6,538 — 552

To link to this Article: DOI: 10.1080/08839510903078101

URL: http://dx.doi.org/10.1080/08839510903078101

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/08839510903078101
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Applied Artificial Intelligence, 23:538–552
Copyright © 2009 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510903078101

GENETIC ALGORITHM MODEL FOR PROFIT MAXIMIZATION
OF GENERATING COMPANIES IN DEREGULATED
ELECTRICITY MARKETS

Pavlos S. Georgilakis
Department of Production Engineering and Management,
Technical University of Crete, Chania, Greece

� In deregulated and rapidly changing electricity markets, there is strong interest on how to
solve the new price-based unit commitment (PBUC) problem used by each generating company
to optimize its generation schedule in order to maximize its profit. This article proposes a
genetic algorithm (GA) solution to the PBUC problem. The advantages of the proposed GA
are: 1) flexibility in modeling problem constraints because the PBUC problem is not decomposed
either by time or by unit; 2) smooth and easier convergence to the optimum solution thanks
to the proposed variable fitness function which not only penalizes solutions that violate the
constraints but also this penalization is smoothly increasing as the number of generations
increases; 3) easy implementation to work on parallel computers, and 4) production of multiple
unit commitment schedules, some of which may be well suited to situations that may arise
quickly due to unexpected contingencies. The method has been applied to systems of up to
120 units and the results show that the proposed GA constantly outperforms the Lagrangian
relaxation PBUC method for systems with more than 60 units. Moreover, the difference between
the worst and the best GA solution is very small, ranging from 0.10% to 0.49%.

In the regulated or state monopoly electricity markets, unit commitment
(UC) refers to optimizing generation resources over a daily to weekly
time horizon to satisfy load demand at the least operational cost while
satisfying prevailing constraints, such as minimum up/down time, ramping
up/down, and minimum/maximum generating capacity. Since the related
objective would be to minimize the operational cost, UC is commonly
referred to as a cost-based unit commitment (CBUC). The optimal
solution to the CBUC problem can be obtained by complete enumeration,
which is prohibitive in practice owing to its excessive computational
resource requirements (Wood and Wollenberg 1996). The need for
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GA for Profit Maximization of Gencos 539

practical, cost-effective UC solutions led to the development of various
UC algorithms that produce suboptimal, but efficient scheduling for
real-sized power systems comprising hundreds of generators (Sheblé
and Fahd 1994). Cost-based unit commitment methods include priority
list methods (Wood and Wollenberg 1996), dynamic programming
(Snyder, Powell, and Rayburn 1987), Lagrangian relaxation (LR) (Zhuang
and Galiana 1988), branch-and-bound (Cohen and Yoshimura 1983),
and Bender’s decomposition (Baptistella and Geromel 1980). Recently,
simulated annealing (Zhuang and Galiana 1990), expert systems (Wang
and Shahidehpour 1992), artificial neural networks (Sasaki, Watanabe,
and Yokoyama 1992), genetic algorithms (Kazarlis, Bakirtzis, and Petridis
1996; Maifeld and Sheblé 1996; Damousis, Bakirtzis, and Dokopoulos
2004; Senjyu et al. 2005), and hybrid techniques (Wong and Wong 1995;
Aldridge et al. 2001; El Desouky et al. 2001) have also been used for the
solution of the CBUC problem.

On the other hand, in the deregulated electricity markets, the UC used
by each generating company (GENCO) refers to optimizing generation
scheduling in order to maximize the GENCO’s profit (Shahidehpour,
Yamin, and Li 2002). In this new paradigm, the signal that would enforce
a unit’s on/off status would be the price, including the fuel purchase price
and the energy sales price. Increasing competition, decreasing obligations-
to-serve, and enhanced futures, forwards, and spot market trading in
electricity make the decision of which units to operate more complex than
ever before. This UC has a different objective than that of CBUC and is
referred to as price-based unit commitment (PBUC). The PBUC is a large-
scale, nonconvex, nonlinear, mixed-integer optimization problem. Because
electricity markets are changing rapidly, there is strong interest on how
new UC models are solved and what purposes they serve (Hobbs et al.
2001). Given market prices, LR was employed to solve the PBUC problem
in Shahidehpour et al. (2002). In a bilateral market, the PBUC was studied
in Allen and Ilic (1999) by considering the uncertainty of market price. In
a pool market, the PBUC problem was solved using LR, stochastic dynamic
programming, and Bender’s decomposition in Takriti, Krasenbrink, and
Wu (2000). The PBUC for a price-taker thermal unit was modeled as
a mixed integer programming (MIP) problem in Arroyo and Conejo
(2000, 2002). Given the price quota curve, the PBUC for a price-maker
participant was modeled as a MIP problem in de La Torre, Arroyo, Conejo,
and Contreras (2002). The PBUC for a GENCO with thermal, combined-
cycle, cascaded-hydro, and pumped-storage units is modeled as an MIP
problem in Li and Shahidehpour (2005). A general probabilistic-dynamic-
programming framework for the problem of self-committing units when
there are multiple noncooperative producers is introduced in Correia
(2006). A method for building bidding curves under price uncertainty
using PBUC is proposed in Shrestha, Pokharel, Lie, and Fleten (2007).
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540 P. S. Georgilakis

Genetic algorithms are global optimization techniques inspired by
the study of genetics (Goldberg 1989; Michalewicz 1996). They can be
easily implemented for the solution of hard optimization problems and
they provide great modeling flexibility. This article proposes a genetic
algorithm (GA) model for the solution of the PBUC problem. The
power of the suggested GA solution relies on the proposed variable
fitness function and the problem specific operators adopted. Additional
advantages of the proposed GA solution are flexibility in modeling
PBUC problem constraints and easy implementation to work on parallel
computers. Another benefit of using GA to generate UC schedules is
that an entire population of schedules is developed, some of which may
be well suited to situations that may arise quickly due to unexpected
contingencies.

PBUC PROBLEM FORMULATION

Definition

The price-based unit commitment problem can be stated as follows:
for a GENCO with N generating units, and given a certain market price
profile of energy as well as a certain demand profile (with reserves),
it is required to determine the start-up/shut-down times and the power
output of all the generating units at each time interval t over a specified
scheduling period T , so that the generator’s total profit is maximized,
subject to the unit and power balance constraints. In this article, the time
interval for the considered electricity market is 1 hour.

Objective Function

For unit i at hour t , the profit is calculated by subtracting the total
production cost during that hour from the revenue:

F (i , t) = R�n(i , t) − Cost(i , t)� (1)

It should be noted that a negative profit, F (i , t), indicates a loss for unit i
at hour t .

The revenue for unit i at hour t is calculated by multiplying its
production with the forecasted market price for energy

R�n(i , t) = pgm(t) · P (i , t) · I (i , t), (2)

where I (i , t) is the status of unit i at hour t (1 = ON, 0 = OFF), and pgm(t)
is the forecasted market price for energy at hour t .
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GA for Profit Maximization of Gencos 541

The market price for energy can be forecasted using time-series models
(Contreras, Espinola, Nogales, and Conejo 2003), wavelet transform (Yao
and Song 2000), and artificial neural networks (Georgilakis 2007).

The total production cost, Cost(i , t), for each unit at each hour is the
sum of the fuel cost, start-up cost, and shut-down cost during that hour:

Cost(i , t) = [FC(i , t) + SU (i , t) + SD(i , t)] · I (i , t)� (3)

The fuel cost, FC(i , t), of unit i in any given hour t is a function of the
power output, P (i , t), of that unit during that hour. The fuel cost function
is modeled as a second-order polynomial:

FC(i , t) = A(i) · [P (i , t)]2 + B(i) · P (i , t) + C(i)� (4)

The start-up cost in any given hour t depends on the number of
hours a unit has been OFF prior to start-up. This cost is modeled by an
exponential function of the form

SU (i , t) = D(i) + E(i) ·
[
1 − exp

(
−Xoff (i , t)

CT (i)

)]
, (5)

where D(i) is the combined crew start-up costs and equipment
maintenance costs of unit i , E(i) is the cold start-up cost of unit i , Xoff (i , t)
is the continuous offline time of unit i at hour t , and CT (i) is the cooling
time constant of unit i .

The shut-down cost, SD(i , t), is given a constant value for each unit per
shut-down.

The objective of the PBUC problem for the GENCO operating in the
competitive environment is to maximize, during the scheduling horizon of
T hours, the total profit for all its N generating units:

max
I (i ,t),P (i ,t)

T∑
t=1

N∑
i=1

F (i , t) (6)

subject to constraints (7) to (14), as described in the “Constraints”
subsection.

Constraints

The demand constraint for the PBUC problem is defined as follows:

N∑
i=1

P (i , t) · I (i , t) ≤ FDWR(t), ∀t , (7)

where FDWR(t) is the forecasted demand with reserves for hour t .
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542 P. S. Georgilakis

In constraint (7), it is assumed that the buyers purchase reserves
per contract; however, the algorithm could easily be modified to handle
different market rules.

The coupling power-balance and reserve-requirement constraint (7)
complicates the solution of the PBUC optimization problem, since the
PBUC cannot be decomposed by unit.

Thermal units are subject to a variety of constraints that are described
in this subsection.

1. Unit Generation Limits: Units can only generate between their minimum,
Pmin(i), and maximum, Pmax(i), generation limits:

Pmin(i) · I (i , t) ≤ P (i , t) ≤ Pmax(i) · I (i , t), ∀i ,∀t � (8)

2. Unit Minimum Up Time Constraint:

[X up(i , t) − T up(i)] · [I (i , t − 1) − I (i , t)] ≥ 0, ∀i ,∀t , (9)

where X up(i , t) is the cumulative up time (i.e., time for which unit i has
been ON) during hour t , and T up(i) is the minimum up time of unit i .

3. Unit Minimum Down Time Constraint:

[X down(i , t − 1) − T down(i)] · [I (i , t − 1) − I (i , t)] ≥ 0, ∀i ,∀t , (10)

where X down(i , t) is the cumulative down time of unit i during hour t ,
and T down(i) is the minimum down time of unit i .

4. Unit Ramp-Up Constraint: The amount a unit’s generation can increase
in an hour:

P (i , t) − P (i , t − 1) ≤ UR(i), ∀i ,∀t , (11)

where UR(i) is the ramp-up rate limit of unit i .
Constraint (11) applies as unit i ramps-up. The limit at start-up is
given by

P (i , t) ≤ max[UR(i),Pmin(i)], ∀i ,∀t � (12)

5. Unit Ramp-Down Constraint: The amount a unit’s generation can
decrease in an hour:

P (i , t − 1) − P (i , t) ≤ DR(i), ∀i ,∀t , (13)

where DR(i) is the ramp down rate limit of unit i .
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GA for Profit Maximization of Gencos 543

Constraint (13) applies as unit i ramps-down. The limit at shut-down is
given by

P (i , t) ≤ max[DR(i),Pmin(i)], ∀i ,∀t � (14)

6. Unit Status Restrictions: Certain units may be required to be online at
certain hours (must run), or may become unavailable due to planned
maintenance or forced outage (must not run), due to operating
constraints, reliability requirements, or economic reasons.

7. Initial Conditions: The initial conditions of the units at the start of the
scheduling period must be considered.

GENETIC ALGORITHM SOLUTION TO THE PBUC PROBLEM

Fundamentals of Genetic Algorithms

Genetic algorithms are optimization methods inspired by natural
genetics and biological evolution. They manipulate strings of data, each
of which represents a possible problem solution. These strings can be
binary strings, floating-point strings, or integer strings, depending on the
way the problem parameters are coded into chromosomes. The strength
of each chromosome is measured using fitness values, which depend only
on the value of the problem objective function for the possible solution
represented by the chromosome. The stronger strings are retained in
the population and recombined with other strong strings to produce
offspring. Weaker ones are gradually discarded from the population.
The processing of strings and the evolution of the population of candidate
solutions are performed based on probabilistic rules. A comprehensive
description of genetic algorithms can be found in Goldberg (1989) and
Michalewicz (1996).

Chromosome Representation

A convenient binary mapping to a chromosome representation is
selected in which “0” denotes the OFF state and “1” represents the ON state
of a unit. A candidate solution (chromosome) is a string whose length is
the product of the number of generating units and the scheduling hours.

The information available in the chromosome together with the initial
state (continuous up or down time) of the units is all one needs to
accurately model all time-dependent constraints of the PBUC problem. This
great modeling flexibility is one of the advantages of the proposed GA
solution, because the PBUC problem is not decomposed either by time or
by unit.
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544 P. S. Georgilakis

Creation of Initial Population

The initial population of candidate solutions is created randomly. After
trial and error, it was found that a population size of 50 chromosomes
provides very good results.

Economic Dispatch

The economic dispatch problem at hour t is formulated as

min
P (i ,t)

N∑
i=1

−F (i , t), ∀t , (15)

subject to constraints (7) to (14).
For each chromosome, the unit commitment status, I (i , t), is

determined and is no longer a variable. The only variable is the
generation, P (i , t), of each unit i at hour t ; therefore, sequential quadratic
programming (SQP) (Rao 1996) is adopted to solve the economic dispatch
problem. It should be noted that in order to save computation time,
the economic dispatch is only performed if the given unit commitment
schedule satisfies the minimum up/down time constraints.

Evaluation of Candidate Solutions

To apply the GA to the PBUC problem that is highly constrained,
the solutions (chromosomes) that violate the constraints are penalized.
More specifically, the fitness value, Q , of each chromosome is calculated as
follows:

Q =
T∑
t=1

N∑
i=1

F (i , t) −
L∑

k=1

mmax
k · g

gmax
· |Vk |, (16)

where L is the number of violated constraints, mmax
k is the final value of the

multiplier of constraint k, g is the generation index, gmax is the maximum
number of generations the genetic algorithm is allowed to run, and Vk is
the amount of violation of constraint k.

It can be seen from (16) that a variable fitness function has been
adopted according to which the penalty multiplier is negligible during the
first generations, while the penalty multiplier rises to its final (appropriate
large) value mmax

k near the end of the GA generations. The variable fitness
function results in a variable search hyperspace, simpler at the beginning
and more complicated at the later stages of the GA search. For the PBUC
problem, this variable fitness function has been proven very efficient, since
it manages to locate the exact global optimum as shown in the “Results
and Discussion” section.
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GA for Profit Maximization of Gencos 545

Reproduction

After the evaluation of the initial population, the GA begins the
creation of the new generation of solutions. The chromosomes are selected
in pairs (parents) using the roulette wheel parent selection algorithm that
selects a chromosome with a probability proportional to the chromosome’s
relative fitness within the population. Then, from each two parents, two
children (offspring) are produced by means of crossover and mutation
operators.

Crossover Operation

The multi-point crossover operator is used. This operator is applied
with a certain probability that ranges from 0.4 to 0.9 per chromosome.
When crossover is applied, the parent chromosomes are combined to
form two new chromosomes (children) that inherit solution characteristics
from both parents. If crossover is not applied, the children are identical
replications of their parents.

Mutation Operation

With a small probability, ranging from 0.004 to 0.024 per bit, randomly
chosen bits of the children’s chromosomes change from “0” to “1” or vice
versa.

Elitism

The best two solutions of every generation are copied to the next
generation so that the possibility of their destruction through a genetic
operator is eliminated.

Special Operators

1) Swap-window operator: This operator is applied to all the population
chromosomes with a probability of 0.3. It selects two arbitrary units u1,
u2, a “time window” of width w (hours) between 1 and T , and a random
window position between 1 and T − w. Then the bits of the two units
(u1,u2) included in the window are exchanged.

2) Window-mutation operator: This operator is applied to all the population
chromosomes with a probability of 0.3. It randomly selects one unit,
a “time window” of width w (hours) between 1 and T and a random
window position between 1 and T − w. Then, it mutates all the
bits included in the window turning all of them to “1” or all of
them to “0.”
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TABLE 1 Data for the 20-Unit Problem Set

Unit Unit Pmin(i) pmax(i) A(i) B(i) C(i) Tup(i) T down(i) X 0(i) D(i) E(i) CT (i) Rup(i) Rdown(i) Shut-Down
index, i name [MW] [MW] ($/MW2h) ($/MWh) ($/h) (h) (h) (h) ($/h) ($/h) (h) (MW/h) (MW/h) cost ($)

1 U18a 3.6 18 0.04175 15�7463 19�01 0 0 −1 0 0 1 6 5 0
2 U18b 3.6 18 0.04239 15�8712 19�04 0 0 −1 0 0 1 6 5 0
3 U18c 3.6 18 0.04411 16�0311 19�27 0 0 −1 0 0 1 6 5 0
4 U18d 3.6 18 0.04513 16�1724 19�44 0 0 −1 0 0 1 6 5 0
5 U30a 6 30 0.06975 26�2541 31�72 0 0 −1 30 30 2 12 15 0
6 U30b 6 30 0.07012 26�3911 31�74 0 0 −1 30 30 2 12 15 0
7 U30c 6 30 0.07237 26�5259 31�94 0 0 −1 30 30 2 12 15 0
8 U114a 22.8 114 0.01459 20�3148 11�57 3 2 −3 75 75 3 23 23 0
9 U114b 22.8 114 0.01567 20�4512 11�59 3 2 −3 75 75 3 23 23 0

10 U114c 22.8 114 0.01704 20�6219 11�77 3 2 −3 75 75 3 23 30 0
11 U150a 37.5 150 0.01921 26�7302 15�22 4 2 −3 105 105 4 38 38 0
12 U150b 37.5 150 0.02062 26�9095 15�25 4 2 −3 105 105 4 45 45 0
13 U150c 37.5 150 0.02242 27�1341 15�49 4 2 −3 105 105 4 45 45 0
14 U230a 80 230 0.00563 15�2835 44�85 5 3 −5 225 225 6 150 150 0
15 U230b 80 230 0.00575 15�2911 44�93 5 3 −5 225 225 6 225 150 0
16 U295a 103 295 0.01088 12�8875 6�78 5 4 −4 300 300 8 290 375 0
17 U295b 103 295 0.01133 12�8913 6�89 5 4 −4 300 300 8 290 375 0
18 U350a 140 350 0.00301 10�7601 32�96 8 5 −10 300 200 8 200 300 0
19 U400a 100 400 0.01059 8�3391 64�16 8 5 −10 500 500 8 250 250 0
20 U400b 100 400 0.01123 8�4511 64�36 8 5 −10 500 500 10 250 250 0

546
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GA for Profit Maximization of Gencos 547

After a thorough investigation, it was found that the above two GA
special operators are very efficient for the solution of the PBUC problem.

Creation of the Next Generation

After the application of the operators adopted (crossover, mutation,
elitism, and special operators), the children’s population is created and
the previous population is replaced by the new generation. Children are
evaluated and the fitness function for each individual is calculated. The
procedure is repeated until the termination criterion is met, defined by a
maximum number of generations.

RESULTS AND DISCUSSION

The effectiveness of the proposed GA has been tested for six problem
sets comprising 20, 40, 60, 80, 100, and 120 unit systems, respectively.
Initially, a base problem set of 20 units was chosen along with a 24-hour
price profile for energy as well as a 24-hour profile for the forecasted
demand with reserves. For the 40-unit problem, the initial 20 units are
duplicated, the forecasted demand (with reserves) is multiplied by two,
while the price profile remains identical. A similar approach is followed to
produce the unit and demand data for the remaining problem sets.

For each one of the six problem sets, the GA uses the advanced
operators and techniques described in “Genetic algorithm solution to the
PBUC problem” section. In order to avoid misleading results due to the
stochastic nature of the GA, 20 runs are made for each problem set, with
each run starting with different random populations.

FIGURE 1 Hourly market prices of energy.
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548 P. S. Georgilakis

FIGURE 2 Hourly forecasted demand with reserves.

A Lagrangian relaxation algorithm is also implemented to provide a
near optimal solution for each problem set, in order to be used as a success
limit for the GA, and serve as reference to judge the GA efficiency.

Table 1 presents the data for the 20-unit problem set, Figure 1 shows
the 24-hour price profile for energy, and Figure 2 presents the 24-hour
forecasted demand with reserves. In Table 1, the column X 0 gives the
initial operational time (in hours) of each unit: if X 0 is positive, it means
that the unit is ON for X 0 hours, while if X 0 is negative, it means that the
unit is OFF for −X 0 hours. Table 2 presents the 20-units ON/OFF schedule

TABLE 2 20-Units ON/OFF Schedule by Genetic Algorithm

Unit ON/OFF Schedule for the Hours 0–24

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
7 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
8 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
9 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

10 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
12 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
13 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
15 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
16 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
17 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
18 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
19 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
20 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
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TABLE 3 Production (MW) Schedule for the 20-Units Problem Set

Unit
Name Production (MW) for the Hours 0–24

U18a 0 0 0 0 6 12 18 18 18 18 18 18 18 18 18 18 18 18 18 13 8 3.6 0 0 0
U18b 0 0 0 0 6 12 18 18 18 18 18 18 18 18 18 18 18 18 18 13 8 3.6 0 0 0
U18c 0 0 0 0 6 12 18 18 18 18 18 18 18 18 18 18 18 18 18 13 8 3.6 0 0 0
U18d 0 0 0 0 6 12 18 18 18 18 18 18 18 18 18 18 18 18 18 13 8 3.6 0 0 0
U30a 0 0 0 0 0 0 12 24 30 30 30 30 30 30 30 30 30 30 15 0 0 0 0 0 0
U30b 0 0 0 0 0 0 12 24 30 30 30 30 30 30 30 30 30 30 15 0 0 0 0 0 0
U30c 0 0 0 0 0 0 12 24 30 30 30 30 30 30 30 30 30 30 15 0 0 0 0 0 0
U114a 0 0 0 23 46 69 92 114 114 114 114 114 114 114 114 114 114 114 114 91 68 45 23 0 0
U114b 0 0 0 23 46 69 92 114 114 114 114 114 114 114 114 114 114 114 114 91 68 45 23 0 0
U114c 0 0 0 23 46 69 92 114 114 114 114 114 114 114 114 114 114 114 114 91 68 45 23 0 0
U150a 0 0 0 0 0 38 76 114 150 150 150 150 150 150 150 150 150 112 74 38 0 0 0 0 0
U150b 0 0 0 0 0 0 45 90 135 150 150 150 150 150 150 150 150 105 60 38 0 0 0 0 0
U150c 0 0 0 0 0 0 45 90 135 150 150 150 150 150 150 150 150 105 60 38 0 0 0 0 0
U230a 0 0 0 0 150 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 80 0 0 0
U230b 0 0 0 0 0 225 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 80 0 0 0
U295a 0 0 0 0 0 290 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 0 0 0
U295b 0 0 0 0 0 290 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 0 0 0
U350a 0 0 0 200 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 140 0 0
U400a 0 0 0 250 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 150 0 0
U400b 0 0 0 250 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 150 0 0

549
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550 P. S. Georgilakis

FIGURE 3 Total profit per hour for the 20-units problem set.

obtained by the GA and Table 3 shows the corresponding generation
schedule obtained by the SQP solution to the economic dispatch problem.
It is concluded from Table 2 that all 20 units are ON from hour 6 to hour
18, where the market price for energy is over 30 $/MWh, as Figure 1 shows.
It is concluded from Figure 3 that the maximum profit, i.e., $107,706, is
obtained during hour 12, where the energy price has its maximum value
(52.2 $/MWh), while the profit is zero during hours 1, 2, 23, and 24, since
all 4units are OFF during these hours. From Figure 4 it can be seen that
unit U400a produces the highest profit, i.e., $158,341, which corresponds
to the 16.3% of the total profit ($972,214) of all the units during the 24-h
scheduling period.

Table 4 compares the results obtained from the GA and the Lagrangian
relaxation method for the six problem sets. For the GA, both the best and
the worst solutions produced during the 20 runs are presented together
with their difference as a percentage of the best solution. Table 4 shows
that for large systems with 60 units or more, the GA constantly outperforms
the LR unit commitment, since the profit calculated even by the worst GA

FIGURE 4 Total profit per generating unit for the 20-units problem set.
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GA for Profit Maximization of Gencos 551

TABLE 4 Comparison of Lagrangian Relaxation and Genetic Algorithm
Results for Up to 120-Unit Systems

Genetic algorithm

Total profit ($)Langrangian relaxation

Units Total profit ($) Best Worst Difference (%)

20 972 214 972 214 967 450 0.49
40 1 939 221 1 944 914 1 938 496 0.33
60 2 903 369 2 918 443 2 912 314 0.21
80 3 873 213 3 891 430 3 884 815 0.17

100 4 838 537 4 864 331 4 857 521 0.14
120 5 804 271 5 837 545 5 831 707 0.10

solution is always higher than the profit calculated by the LR method.
Moreover, the difference between the worst and the best GA solution is
very small, ranging from 0.10% to 0.49%. These very good results are
attributed to the robust optimization capabilities of the GA in conjunction
with the proposed variable fitness function and the problem specific
operators adopted.

CONCLUSION

A GA solution to the price-based unit commitment problem has been
presented. The power of the suggested GA solution relies on the proposed
variable fitness function and the problem specific operators adopted.
The variable fitness function not only penalizes solutions that violate the
constraints but also this penalization is smoothly increasing as the number
of generation increases, which significantly contributes to the smooth
and easier convergence to the optimum solution. The method has been
applied to systems of up to 120 units and the test results show that the
proposed GA constantly outperforms the Lagrangian relaxation PBUC
method for systems with more than 60 units. Moreover, the difference
between the worst and the best GA solution is very small, not more than
0.49%. The obtained results show that the proposed GA approach is a very
effective method for the solution of the PBUC problem.
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